Overblog Suivre ce blog
Editer l'article Administration Créer mon blog
16 mars 2011 3 16 /03 /mars /2011 15:22

Journal of Bacteriology, February 2011, p. 1018-1020, Vol. 193, No. 4
0021-9193/11/$12.00+0     doi:10.1128/JB.01158-10
Copyright © 2011American Society for Microbiology. All Rights Reserved.


Whole-Genome Sequences of Thirteen Isolates ofBorrelia burgdorferi{triangledown},{dagger}

Steven E. Schutzer,1* Claire M. Fraser-Liggett,2 Sherwood R. Casjens,3* Wei-Gang Qiu,4John J. Dunn,5 Emmanuel F. Mongodin,2 and Benjamin J. Luft6

Department of Medicine, University of Medicine and Dentistry of New Jersey—New Jersey Medical School, Newark, New Jersey 07103,1Institute for Genome Sciences, University of Maryland, School of Medicine, Department of Microbiology and Immunology, Baltimore, Maryland 21201,2Department of Pathology, Division of Microbiology and Immunology, University of Utah Medical School, Salt Lake City, Utah 84112,3Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021,4Biology Department, Brookhaven National Laboratory, Upton, New York 11793,5Department of Medicine, Health Science Center, Stony Brook University, Stony Brook, New York 117946

Received 28 September 2010/ Accepted 6 October 2010


Borrelia burgdorferiis a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence ofB. burgdorferistrain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation anddisease phenotype, we determined the whole-genome sequences of 13 additionalB. burgdorferiisolates that span the range of natural variation. These sequences should allow improvedunderstanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

Lyme disease is the most frequent tick-borne disease in North America and Europe (3,16,17). There are multiple variants ofB. burgdorferi(1,7,15,20,21), the causative agent, but questions remain about how their variation correlates with different clinical manifestations. Whole-genome sequencing (WGS) can orient approaches to diagnostics and vaccines and help avoid potential host cross-reactivity. Improved diagnostics are needed because the best clinical sign, the erythema migrans skin rash, does not always occur. Diagnostic assays and vaccines (18) have been less than satisfactory. However, these were developed before WGS of microbes and the human genome. This project was stimulated by the initial finding of genotypes ofB. burgdorferiassociated with invasiveness/dissemination (15). This has been substantiated (7,21).

The sequencing of strain B31 (6,8) has accelerated progress in Lyme disease research. We sequenced 13 additional isolates, chosen to cover a large fraction of the genetic and geographic diversity and obtained from humans and other natural hosts (Table 1).


View this table:
[in this window]
[in a new window]

TABLE 1. B. burgdorferi isolates used in this study


These genomes were sequenced by the random shotgun method as described previously, using Sanger DNA sequencing to an estimated8-fold coverage (12). Approximately 10,000 and 6,000 successful reads for the small and medium insert plasmid libraries, respectively,were sequenced, representing a total of about 14 Mbp of sequencing data for each. All plasmids were sequenced to closure unless noted otherwise (see Table S1 in the supplemental material). Genome annotation was performed using the JCVI Prokaryotic AnnotationPipeline (www.jcvi.org/cms/research/projects/prokaryotic-annotation-pipeline/overview/).

The B31 sequence showed thatB. burgdorferihas many more replicons (DNA molecules) than other bacteria. Besides its 910-kbp linearchromosome, strain B31 has been shown to have 12 linear and 10 circular plasmids (5), expanding observations (2,10) indicating thatBorreliabacteria universally harbor numerous plasmids, many essential for survival of the bacteria in mice and/or ticks (4). The newly sequenced genomes contain a total of 17,084,900 bp, averaging 1,314,223 bp/genome. Each strain carried between 13 and 21 plasmids (239 plasmids were sequenced, about half predicted to be linear replicons). At least 9 new plasmid types not in B31 were identified. Many plasmids underwent substantial rearrangements in different lineages. The linear chromosomes are very stable, with little variation among isolates. With the exception of a few differences at their right ends, the gene content of the chromosomes is essentially identical. Contrary to previous assumptions that genetic changes occurred only by slower point mutations, our initial WGS comparison of 4 strains showed that closely relatedB. burgdorferistrains frequently and more rapidly than by point mutation undergo horizontal exchange of genetic information (14). Evidence of this is also found in the newer genomes sequenced in this work.

The genetic diversity ofB. burgdorferiappears to be maintained in part by neutral and adaptive processes, such as resistance to host immune defense mechanisms and host preferences (4,9). Key questions remain on the genomic basis of these intra- and interspecific variations, particularly those associated with host resistance, high-frequency proliferation in wildlife populations, and invasiveness in humans.

Our long-range objectives are to develop a pangenomic picture ofB. burgdorferidiversity (13) and to understand how the variationsinfluence pathogenicity. We believe solutions for many of the problems associated with Lyme disease will come from scientificinformation, beginning with comparative genomics of this organism. Sequencing is a superb discovery tool whose greatest impact is realized when additional biology can implemented. Information from WGS of these well-characterized strains should provide a foundation for new hypotheses on the pathogenesis of Lyme disease and rational diagnostics and vaccines.

Nucleotide sequence accession numbers.

These sequences have been deposited in GenBank, and their Genome Project ID numbers and accession numbers are listed in Table 1and in Table S1 in the supplemental material, respectively.


This research was supported by the following grants from the National Institutes of Health: AI49003, AI37256, AI30071, GM083722, and RR03037. Additional funding was provided by the Lyme Disease Association and the Tami Fund.


* Corresponding author. Mailing address for Steven E. Schutzer: Department of Medicine, University of Medicine and Dentistry of New Jersey—New Jersey Medical School, Newark, NJ 07103. E-mail: schutzer@umdnj.edu. Mailing address for Sherwood R. Casjens: Department of Pathology, University of Utah Medical School, Room 2200 EEJMRB, 15 North Medical Dr. East, Salt Lake City, UT 84112. E-mail: sherwood.casjens@path.utah.edu Back


{triangledown}Published ahead of print on 8 October 2010. Back

{dagger}Supplemental material for this article may be found athttp://jb.asm.org/. Back


  1. 1.Attie, O., J. F. Bruno, Y. Xu, D. Qiu, B. J. Luft, and W. G. Qiu. 2007. Co-evolution of the outer surface protein C gene (ospC) and intraspecific lineages of Borrelia burgdorferi sensu stricto in the northeastern United States. Infect. Genet. Evol. 7:1-12.[CrossRef][Medline]
  2. 2.Barbour, A. G., and C. F. Garon. 1987. Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237:409-411.[Abstract/Free Full Text]
  3. 3.Benach, J. L., E. M. Bosler, J. P. Hanrahan, J. L. Coleman, G. S. Habicht, T. F. Bast, D. J. Cameron, J. L. Ziegler, A. G. Barbour, W. Burgdorfer, R. Edelman, and R. A. Kaslow. 1983. Spirochetes isolated from the blood of two patients with Lyme disease. N. Engl. J. Med. 308:740-742.[Medline]
  4. 4.Bockenstedt, L. K., J. Mao, E. Hodzic, S. W. Barthold, and D. Fish. 2002. Detection of attenuated, noninfectious spirochetes in Borrelia burgdorferi-infected mice after antibiotic treatment. J. Infect. Dis. 186:1430-1437.[Abstract/Free Full Text]
  5. 5.Casjens, S. 2000. Borrelia genomes in the year 2000. J. Mol. Microbiol. Biotechnol. 2:401-410.[CrossRef][Medline]
  6. 6.Casjens, S., N. Palmer, R. van Vugt, W. M. Huang, B. Stevenson, P. Rosa, R. Lathigra, G. Sutton, J. Peterson, R. J. Dodson, D. Haft, E. Hickey, M. Gwinn, O. White, and C. M. Fraser. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35:490-516.[CrossRef][Medline]
  7. 7.Crowder, C. D., H. E. Matthews, S. Schutzer, M. A. Rounds, B. J. Luft, O. Nolte, S. R. Campbell, C. A. Phillipson, F. Li, R. Sampath, D. J. Ecker, and M. W. Eshoo. 2010. Genotypic variation and mixtures of Lyme Borrelia in Ixodes ticks from North America and Europe. PLoS One 5:e10650.[CrossRef][Medline]
  8. 8.Fraser, C. M., S. Casjens, W. M. Huang, G. G. Sutton, R. Clayton, R. Lathigra, O. White, K. A. Ketchum, R. Dodson, E. K. Hickey, M. Gwinn, B. Dougherty, J. F. Tomb, R. D. Fleischmann, D. Richardson, J. Peterson, A. R. Kerlavage, J. Quackenbush, S. Salzberg, M. Hanson, R. van Vugt, N. Palmer, M. D. Adams, J. Gocayne, et al. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580-586.[CrossRef][Medline]
  9. 9.Hodzic, E., S. Feng, K. Holden, K. J. Freet, and S. W. Barthold. 2008. Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob. Agents Chemother. 52:1728-1736.[Abstract/Free Full Text]
  10. 10.Howe, T. R., L. W. Mayer, and A. G. Barbour. 1985. A single recombinant plasmid expressing two major outer surface proteins of the Lyme disease spirochete. Science 227:645-646.[Abstract/Free Full Text]
  11. 11.Huang, W. M., M. Robertson, J. Aron, and S. Casjens. 2004. Telomere exchange between linear replicons of Borrelia burgdorferi. J. Bacteriol. 186:4134-4141.[Abstract/Free Full Text]
  12. 12.Nelson, K. E., D. E. Fouts, E. F. Mongodin, J. Ravel, R. T. DeBoy, J. F. Kolonay, D. A. Rasko, S. V. Angiuoli, S. R. Gill, I. T. Paulsen, J. Peterson, O. White, W. C. Nelson, W. Nierman, M. J. Beanan, L. M. Brinkac, S. C. Daugherty, R. J. Dodson, A. S. Durkin, R. Madupu, D. H. Haft, J. Selengut, S. Van Aken, H. Khouri, N. Fedorova, H. Forberger, B. Tran, S. Kathariou, L. D. Wonderling, G. A. Uhlich, D. O. Bayles, J. B. Luchansky, and C. M. Fraser. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32:2386-2395.[Abstract/Free Full Text]
  13. 13.Qiu, W. G., J. F. Bruno, W. D. McCaig, Y. Xu, I. Livey, M. E. Schriefer, and B. J. Luft. 2008. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 14:1097-1104.[CrossRef][Medline]
  14. 14.Qiu, W. G., S. E. Schutzer, J. F. Bruno, O. Attie, Y. Xu, J. J. Dunn, C. M. Fraser, S. R. Casjens, and B. J. Luft. 2004. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc. Natl. Acad. Sci. U. S. A. 101:14150-14155.[Abstract/Free Full Text]
  15. 15.Seinost, G., D. E. Dykhuizen, R. J. Dattwyler, W. T. Golde, J. J. Dunn, I. N. Wang, G. P. Wormser, M. E. Schriefer, and B. J. Luft. 1999. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect. Immun. 67:3518-3524.[Abstract/Free Full Text]
  16. 16.Steere, A. C. 1989. Lyme disease. N. Engl. J. Med. 321:586-596.[Medline]
  17. 17.Steere, A. C., R. L. Grodzicki, A. N. Kornblatt, J. E. Craft, A. G. Barbour, W. Burgdorfer, G. P. Schmid, E. Johnson, and S. E. Malawista. 1983. The spirochetal etiology of Lyme disease. N. Engl. J. Med. 308:733-740.[Medline]
  18. 18.Steere, A. C., V. K. Sikand, F. Meurice, D. L. Parenti, E. Fikrig, R. T. Schoen, J. Nowakowski, C. H. Schmid, S. Laukamp, C. Buscarino, and D. S. Krause. 1998. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 339:209-215.[CrossRef][Medline]
  19. 19.Tourand, Y., J. Deneke, T. J. Moriarty, and G. Chaconas. 2009. Characterization and in vitro reaction properties of 19 unique hairpin telomeres from the linear plasmids of the Lyme disease spirochete. J. Biol. Chem. 284:7264-7272.[Abstract/Free Full Text]
  20. 20.Travinsky, B., J. Bunikis, and A. G. Barbour. 2010. Geographic differences in genetic locus linkages for Borrelia burgdorferi. Emerg. Infect. Dis. 16:1147-1150.[Medline]
  21. 21.Wormser, G. P., D. Liveris, J. Nowakowski, R. B. Nadelman, L. F. Cavaliere, D. McKenna, D. Holmgren, and I. Schwartz. 1999. Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. J. Infect. Dis. 180:720-725.[Abstract/Free Full Text]
  22. 22.Zhang, J. R., and S. J. Norris. 1998. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect. Immun. 66:3698-3704.[Abstract/Free Full Text]

Journal of Bacteriology, February 2011, p. 1018-1020, Vol. 193, No. 4
0021-9193/11/$12.00+0     doi:10.1128/JB.01158-10
Copyright © 2011American Society for Microbiology. All Rights Reserved.

This article has been cited by other articles:

  • Casjens, S. R., Fraser-Liggett, C. M., Mongodin, E. F., Qiu, W.-G., Dunn, J. J., Luft, B. J., Schutzer, S. E. (2011). Whole Genome Sequence of an Unusual Borrelia burgdorferi Sensu Lato Isolate.J. Bacteriol.193: 1489-1490[Abstract] [Full Text]  
  • Banik, S., Terekhova, D., Iyer, R., Pappas, C. J., Caimano, M. J., Radolf, J. D., Schwartz, I. (2011). BB0844, an RpoS-Regulated Protein, Is Dispensable for Borrelia burgdorferi Infectivity and Maintenance in the Mouse-Tick Infectious Cycle.Infect. Immun.79: 1208-1217[Abstract] [Full Text]  
  • Norris, S. J., Howell, J. K., Odeh, E. A., Lin, T., Gao, L., Edmondson, D. G. (2011). High-Throughput Plasmid Content Analysis of Borrelia burgdorferi B31 by Using Luminex Multiplex Technology.Appl. Environ. Microbiol.77: 1483-1492[Abstract] [Full Text]  

Partager cet article

Repost 0
Published by chronimed - dans Infections froides
commenter cet article