Overblog Suivre ce blog
Editer l'article Administration Créer mon blog
10 juillet 2013 3 10 /07 /juillet /2013 07:05
Commensal bacteria at the interface of host metabolism and the immune system Jonathan R Brestoff & David Artis AffiliationsCorresponding author Nature Immunology 14, 676–684 (2013) doi:10.1038/ni.2640 Received 19 March 2013 Accepted 10 May 2013 Published online 18 June 2013 The mammalian gastrointestinal tract, the site of digestion and nutrient absorption, harbors trillions of beneficial commensal microbes from all three domains of life. Commensal bacteria, in particular, are key participants in the digestion of food, and are responsible for the extraction and synthesis of nutrients and other metabolites that are essential for the maintenance of mammalian health. Many of these nutrients and metabolites derived from commensal bacteria have been implicated in the development, homeostasis and function of the immune system, suggesting that commensal bacteria may influence host immunity via nutrient- and metabolite-dependent mechanisms. Here we review the current knowledge of how commensal bacteria regulate the production and bioavailability of immunomodulatory, diet-dependent nutrients and metabolites and discuss how these commensal bacteria–derived products may regulate the development and function of the mammalian immune system. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012). CASPubMedArticle Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010). CASISIPubMedArticle Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012). CASPubMedArticle Shin, S.C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011). CASADSPubMedArticle Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723 (2004). CASPubMedArticle Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes linked to obesity. Nature 444, 1022–1023 (2006). CASISIPubMedArticle Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005). CASISIPubMedArticle Hooper, L.V., Midtvedt, T. & Gordon, J.I. Host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002). CASISIPubMedArticle Flint, H.J., Scott, K.P., Louis, P. & Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012). CASPubMedArticle Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L. & Gordon, J.I. Human nutrition, the gut microbiome and immune system. Nature 474, 327–336 (2011). CASISIPubMedArticle Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity. Annu. Rev. Med. 62, 361–380 (2011). CASPubMedArticle Nicholson, J.K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012). CASADSPubMedArticle Holmes, E., Li, J.V., Athanasiou, T., Ashrafian, H. & Nicholson, J.K. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 19, 349–359 (2011). CASPubMedArticle Tremaroli, V. & Bächked, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012). CASADSPubMedArticle Hill, D.A. & Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28, 623–667 (2010). CASISIPubMedArticle Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009). CASISIPubMedArticle Littman, D.R. & Pamer, E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011). CASPubMedArticle Chinen, T. & Rudensky, A.Y. The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol. Rev. 245, 45–55 (2012). CASPubMedArticle Honda, K. & Littman, D.R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012). CASPubMedArticle Hooper, L.V., Littman, D.R. & Macpherson, A.J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012). CASADSPubMedArticle Molloy, M.J., Bouladoux, N. & Belkaid, Y. Intestinal microbiota: shaping local and systemic immune responses. Semin. Immunol. 24, 58–66 (2012). CASPubMedArticle Abt, M.C. & Artis, D. The dynamic influence of commensal bacteria on the immune response to pathogens. Curr. Opin. Microbiol. 16, 4–9 (2013). CASPubMedArticle Kamada, N., Seo, S., Chen, G.Y. & Núñez, G. Role of gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013). CASPubMedArticle Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenerology 140, 1729–1737 (2011). CASArticle Wang, R. & Green, D.R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012). CASPubMedArticle Pearce, E.L. & Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013). CASPubMedArticle Michalek, R.D. et al. Cutting Edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011). CASPubMedArticle Shi, L.Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011). References 27 and 28 demonstrate that distinct metabolic programs critically regulate differentiation of T cell subsets. CASISIPubMedArticle Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012). CASPubMedArticle Donohoe, D.R., Wali, A., Brylawski, B.P. & Bultman, S.J. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian coloncytes. PLoS ONE 7, e46589 (2012). CASADSPubMedArticle Odegaard, J.I. & Chawla, A. The immune system as a sensor of the metabolic state. Immunity 38, 644–654 (2013). CASPubMedArticle Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signaling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008). CASPubMedArticle Fiorucci, S., Mencarelli, A., Palladino, G. & Cipriani, S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci. 30, 570–580 (2009). CASPubMedArticle Ridlon, J.M., Kang, D.L. & Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006). CASISIPubMedArticle Trauner, M. & Boyer, J.L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671 (2003). CASISIPubMed Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. Bile salt hydrolase of Bifidobacterium longum–biochemical and genetic characterization. Appl. Environ. Microbiol. 66, 2502–2512 (2000). CASPubMedArticle Jones, B.V., Begley, M., Hill, C., Gahan, C.G. & Marchesi, J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105, 13580–13585 (2008). ADSPubMedArticle Sayin, S.I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013). This article comprehensively characterizes bile acid metabolism in multiple mouse tissues and provides insight into how beneficial commensal bacteria in the intestine regulate metabolism of bile acids. CASPubMedArticle Martin, F.P. et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007). CASPubMedArticle Claus, S.P. et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol. 4, 219 (2008). CASPubMedArticle Martin, F.P. et al. Panorganismal gut microbiome-host metabolic crosstalk. J. Proteome Res. 8, 2090–2105 (2009). CASISIPubMedArticle Martin, F.P. et al. Dietary modulation of gut functional ecology studied by fecal metabonomics. J. Proteome Res. 9, 5284–5295 (2010). CASISIPubMedArticle Swann, J.R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci. USA 108, 4523–4530 (2011). This article comprehensively characterizes amounts of bile acid metabolites in multiple tissues of germ-free mice versus conventionally reared mice. ADSPubMedArticle Claus, S.P. et al. Colonization-induced host-gut microbial metabolic interaction. MBio 2, e00271–10 (2011). References 39–42 and 44 compare metabolite levels in multiple compartments of conventionally reared mice versus germ-free mice using metabolomic approaches. CASPubMedArticle Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013). CASPubMedArticle Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009). This article demonstrates that FXR regulates intestinal inflammation in a model of IBD and provides mechanistic insight into how bile acid–FXR signaling inhibits activity of NF-κB. CASISIPubMedArticle Wang, Y.D., Chen, W.D., Yu, D., Forman, B.M. & Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulated hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 54, 1421–1432 (2011). Pols, T.W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14, 747–757 (2011). This article demonstrates that the bile acid receptor TGR5 attenuates atherosclerosis by decreasing macrophage-associated inflammation. CASPubMedArticle Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002). CASISIPubMedArticle Pellicciari, R. et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009). CASPubMedArticle David, M., Petricoin, E. III & Larner, A.C. Activation of protein kinase A inhibits interferon induction of the Jak/Stat pathway in U266 cells. J. Biol. Chem. 271, 4585–4588 (1996). CASISIPubMedArticle Lee, E.H. & Rikihisa, Y. Protein kinase A-mediated inhibition of gamma interferon-induced tyrosine phosphorylation of Janus kinases and latent cytoplasmic transcription factors in human monocytes by Ehrlichia chaffeensis. Infect. Immun. 66, 2514–2520 (1998). CASISIPubMed Wen, A.Y., Sakamoto, K.M. & Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413–6419 (2010). CASPubMedArticle Cipriani, S. et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE 6, e25637 (2011). CASADSPubMedArticle Gadaleta, R.M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011). CASPubMedArticle Mencarelli, A. et al. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J. Immunol. 183, 6657–6666 (2009). CASPubMedArticle Diao, H. et al. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 21, 539–550 (2004). CASISIPubMedArticle Lenz, K. Bile acid metabolism and vitamin B12 absorption in ulcerative colitis. Scand. J. Gastroenterol. 11, 769–775 (1976). CASPubMed Rutgeerts, P., Ghoos, Y. & Vantrappen, G. Bile acid studies in patients with Crohn's colitis. Gut 20, 1072–1077 (1979). CASPubMedArticle Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009). CASADSISIPubMedArticle Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). ISIPubMedArticle Cani, P.D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008). CASISIPubMedArticle Kobayashi, M. et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 56, 239–247 (2007). CASPubMedArticle Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012). CASADSPubMed Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). CASADSPubMedArticle Karlsson, F.H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012). CASPubMedArticle Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. USA 108, 4592–4598 (2011). ADSPubMedArticle Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011). CASADSPubMedArticle Abt, M.C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012). CASPubMedArticle Ganal, S.C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012). References 69 and 70 demonstrate that commensal bacteria–derived signals regulate antiviral immunity. CASPubMedArticle Renga, B. et al. The acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLoS ONE 8, e54472 (2013). CASADSPubMedArticle Nijmeijer, R.M. et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS ONE 6, e23745 (2011). CASPubMedArticle Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012). This reference demonstrates that at least some bile acids promote outgrowth of a pathogenic bacterial species in IL-10–deficient mice. CASADSPubMedArticle Chang, K.O. et al. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc. Natl. Acad. Sci. USA 101, 8733–8738 (2004). CASADSPubMedArticle Chang, K.O. & George, D.W. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J. Virol. 81, 9633–9640 (2007). References 74 and 75 demonstrate that bile acids regulate viral replication. CASPubMedArticle Miller, T.L. & Wolin, M.J. Fermentations by saccharolytic intestinal bacteria. Am. J. Clin. Nutr. 32, 164–172 (1979). CASPubMed Cummings, J.H. Fermentation in the human large intestine: evidence and implications for health. Lancet 1, 1206–1209 (1983). CASPubMedArticle Cummings, J.H. & Macfarlane, G.T. The control and consequences of fermentation in the human colon. J. Appl. Bacteriol. 70, 443–459 (1991). CASISIPubMedArticle Wong, J.M.W., de Souza, R., Kendall, C.W.C., Emam, A. & Jenkins, D.J.A. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006). CASADSISIPubMedArticle Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. & Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic, and venous blood. Gut 28, 1221–1227 (1987). CASISIPubMedArticle Macfarlane, S. & Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72 (2003). CASISIPubMedArticle Smiricky-Tjardes, M.R. et al. In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora. J. Anim. Sci. 81, 2505–2514 (2003). CASPubMed Høverstad, T. & Midtvedt, T. Short-chain fatty acids in germfree mice and rats. J. Nutr. 116, 1772–1776 (1986). CASPubMed Donohoe, D.R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011). This article demonstrates that commensal bacteria–derived butyrate, an SCFA, is critical for maintaining metabolic homeostasis and regulating autophagy in colonocytes. CASPubMedArticle Maslowski, K.M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009). This article demonstrates that commensal bacteria–derived SCFAs have an anti-inflammatory role in a model of IBD. CASADSISIPubMedArticle Bjursell, M. et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211–E220 (2011). CASPubMedArticle Bellahcene, M. et al. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br. J. Nutr. 109, 1755–1764 (2012). CASPubMedArticle Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 108, 8030–8035 (2011). ADSPubMedArticle Sina, C.,Jiang, H.-P., Li, J, Schreiber, S. & Rosenstiel, P. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514–7522 (2009). CASPubMedArticle Vinolo, M.A. et al. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE 6, e21205 (2011). CASPubMedArticle Brown, A.J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain fatty acids. J. Biol. Chem. 278, 11312–11319 (2003). CASISIPubMedArticle Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003). Nilsson, N.E., Kotarsky, K., Owman, C. & Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052 (2003). References 91–93 provide comprehensive pharmacologic characterizations of SCFA-GPR41 and SCFA-GPR43 interactions and demonstrate that SCFAs regulate immune cells. CASISIPubMedArticle Cousens, L.S., Gallwitz, D. & Alberts, B.M. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem. 254, 1716–1723 (1979). CASISIPubMed Donohoe, D.R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012). CASPubMedArticle Hinnebusch, B.F., Meng, S., Wu, J.T., Archer, S.Y. & Hodin, R.A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 132, 1012–1017 (2002). CASPubMed Waldecker, M., Kautenburger, T., Daumann, H., Busch, C. & Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587–593 (2008). CASPubMedArticle Virgin, H.W. & Levine, B. Autophagy genes in immunity. Nat. Immunol. 10, 461–470 (2009). CASISIPubMedArticle Hudson, B.D., Tikhonova, I.G., Pandey, S.K., Ulven, T. & Milligan, G. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J. Biol. Chem. 287, 41195–41209 (2012). CASPubMedArticle Cox, M.A. et al. Short-chain fatty acids act as anti-inflammatory mediators by regulating prostaglandin E(2) and cytokines. World J. Gastroenterol. 15, 5549–5557 (2009). CASPubMedArticle Venkatraman, A. et al. Amelioration of dextran sulfate colitis by butyrate: role of heat shock protein 70 and NF-κB. Am. J. Physiol. Gastroenterol. Liver Physiol. 285, G177–G184 (2003). CAS Berndt, B.E. et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1384–G1392 (2012). CASPubMedArticle Liu, L. et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol. 277, 66–73 (2012). CASPubMedArticle Eftimiadi, C. et al. Divergent effect of the anaerobic bacteria by-product butyric acid on the immune response: suppression of T-lymphocyte proliferation and stimulation of interleuking-1 beta production. Oral Microbiol. Immunol. 6, 17–23 (1991). CASPubMedArticle Gilbert, K.M., DeLoose, A., Valentine, J.L. & Fifer, E.K. Structure-activity relationship between carboxylic acids and T cell cycle blockade. Life Sci. 78, 2159–2165 (2006). CASPubMedArticle Bailón, E. et al. Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis. Immunobiology 215, 863–873 (2010). CASISIPubMedArticle Zimmerman, M.A. et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1405–G1415 (2012). CASPubMedArticle Huang, N., Katz, J.P., Martin, D.R. & Wu, G.D. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine 9, 27–36 (1997). CASISIPubMedArticle Patel, K.K. & Stappenbeck, T.S. Autophagy and intestinal homeostasis. Annu. Rev. Physiol. 75, 241–262 (2012). Shakespear, M.R., Halili, M.A., Irvine, K.M., Fairlie, D.P. & Sweet, M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 32, 335–343 (2011). CASISIPubMedArticle Scheppach, W. et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 51–56 (1992). CASPubMed Segain, J.P. et al. Buytrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut 47, 397–403 (2000). CASISIPubMedArticle Resta, S.C. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J. Physiol. (Lond.) 587, 4169–4174 (2009). CASPubMedArticle Bhaskaram, P. Micronutrient malnutrition, infection, and immunity: an overview. Nutr. Rev. 60, S40–S45 (2002). ISIPubMedArticle Cheng, C.H., Chang, S.J., Lee, B.J., Lin, K.L. & Huang, Y.C. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr. 60, 1207–1213 (2006). CASPubMedArticle Meydani, S.N. et al. Vitamin E supplementation and in vivo immune response in healthy elderly subjects: a randomized controlled trial. J. Am. Med. Assoc. 277, 1380–1386 (1997). CASArticle Tamura, J. et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin. Exp. Immunol. 116, 28–32 (1999). CASPubMedArticle Cantorna, M.T., Zhu, Y., Froicu, M. & Wittke, A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am. J. Clin. Nutr. 80, 1717S–1720S (2004). CASPubMed Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481 (2012). This article suggests that commensal bacteria may regulate intestinal inflammation by influencing absorption of amino acids. CASADSPubMedArticle Kunisawa, J., Hashimoto, E., Ishikawa, I. & Kiyono, H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS ONE 7, e32094 (2012). CASPubMedArticle Spencer, S.P. & Belkaid, Y. Dietary and commensal derived nutrients: shaping mucosal and systemic immunity. Curr. Opin. Immunol. 24, 379–384 (2012). CASPubMedArticle Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012) This article demonstrates that B-vitamin metabolites bind MR1 and promote mucosa-associated invariant T cell activation. CASADSPubMedArticle Dusseaux, M. et al. Human MAIT cells are xenobiotic resistant, tissue-targeted, CD161hi IL-17 secreting T cells. Blood 117, 1250–1259 (2011). CASISIPubMedArticle Walker, L.J. et al. Human MAIT cells and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 119, 422–433 (2012). CASPubMedArticle Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010). CASPubMedArticle Le Bourhis, L., Mburu, Y.K. & Lantz, O. MAIT cells, surveyors of a new class of antigen: development and functions. Curr. Opin. Immunol. 25, 174–180 (2013). CASPubMedArticle Smith, M.I., et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013). CASADSPubMedArticle Trehan, I. et al. Antibiotics as part of the management of severe acute malnutrition. N. Engl. J. Med. 368, 425–435 (2013). CASPubMedArticle Mestdagh, R. et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J. Proteome Res. 11, 620–630 (2012). CASPubMedArticle Tannahill, G.M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). This article demonstrates that glucose oxidation and amounts of the citric acid cycle intermediate succinate regulate production of IL-1β. CASADSPubMedArticle Matsumoto, M. et al. Impact of intestinal microbiota on intestinal luminal metabolome. Scientific Reports 2, 233 (2012). ADSPubMed Whitt, D.D. & Demoss, R.D. Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl. Microbiol. 30, 609–615 (1975). CASPubMed McGaha, T.L. et al. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol. Rev. 249, 135–157 (2012). CASPubMedArticle Morris, S.M. Jr. Arginases and arginine deficiency syndromes. Curr. Opin. Clin. Nutr. Metab. Care 15, 64–70 (2012). CASPubMedArticle Puccetti, P. & Grohmann, U. IDO and regulatory T cells: a role for reverse signaling and non-canonical NF-κB activation. Nat. Rev. Immunol. 7, 817–823 (2007). CASISIPubMedArticle Das, P., Lahiri, A., Lahiri, A. & Chakravortty, D. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 6, e1000899 (2010). CASPubMedArticle Munn, D.H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999). CASISIPubMedArticle Nowak, E.C. et al. Tryptophan hydroxylase-1 regulates immune tolerance and inflammation. J. Exp. Med. 209, 2127–2135 (2012). CASPubMedArticle Rodriguez, P.C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004). CASISIPubMedArticle Cobbold, S.P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. USA 106, 12055–12060 (2009). PubMedArticle Scrimshaw, N.S., Wilson, D. & Bressani, R. Infection and kwaszhiorkor. J. Trop. Pediatr. 6, 37–43 (1960). CASPubMedArticle Müller, O. & Krawinkel, M. Malnutrition and health in developing countries. CMAJ 173, 279–286 (2005). PubMed Black, R.E. et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243–260 (2008). ISIPubMedArticle Rice, A.L., Sacco, L., Hyder, A. & Black, R.E. Malnutrition as an underlying cause of childhood deaths associated with infectious diseases in developing countries. Bull. World Health Organ. 78, 1207–1221 (2000). CASISIPubMed Pretorius, P.J. & De Villers, L.S. Antibody response in children with protein malnutrition. Am. J. Clin. Nutr. 10, 379–383 (1962). CASPubMed Savy, M. et al. Landscape analysis of interactions between nutrition and vaccine responses in children. J. Nutr. 139, 2154S–2218S (2009). CASPubMedArticle Dumas, M.E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 103, 12511–12516 (2006). CASADSPubMedArticle Rossjohn, J., Pellicci, D.G., Patel, O., Gapin, L. & Godfrey, D.I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012). CASPubMedArticle Wei, B. et al. Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J. Immunol. 184, 1218–1226 (2010). CASPubMedArticle Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012). CASADSPubMedArticle Kidani, Y. & Bensinger, S.J. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol. Rev. 249, 72–83 (2012). CASPubMedArticle Hong, C. et al. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest. 122, 337–347 (2012). CASPubMedArticle Odegaard, J.I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007). CASADSISIPubMedArticle Odegaard, J.I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008). CASISIPubMedArticle Mukundan, L. et al. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15, 1266–1272 (2009). CASPubMedArticle Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5, 104–112 (2004). CASISIPubMedArticle Are, A. et al. Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc. Natl. Acad. Sci. USA 105, 1943–1948 (2008). PubMedArticle Gerriets, V.A. & Rathmell, J.C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012). CASPubMedArticle Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009). This article suggests that metabolism of fatty acids is critical for formation of CD8+ memory T cells. CASADSISIPubMedArticle Ito, K. et al. PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012). CASPubMedArticle

Partager cet article

Repost 0
Published by Chronimed - dans Infections froides
commenter cet article